companydirectorylist.com  Global Business Directory e directory aziendali
Ricerca Società , Società , Industria :


elenchi dei paesi
USA Azienda Directories
Canada Business Elenchi
Australia Directories
Francia Impresa di elenchi
Italy Azienda Elenchi
Spagna Azienda Directories
Svizzera affari Elenchi
Austria Società Elenchi
Belgio Directories
Hong Kong Azienda Elenchi
Cina Business Elenchi
Taiwan Società Elenchi
Emirati Arabi Uniti Società Elenchi


settore Cataloghi
USA Industria Directories












USA-FL-DEBARY Azienda Directories

Liste d'affari ed elenchi di società:
IMPACT DISC PACKAGING AND PRINTING; INC
Indirizzo commerciale:  931 N State Road 434 Suite 1201236,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4072959337 (+1-407-295-9337)
Numero di Fax :  
Sito web:  cdduplicatoronline. com
Email:  
USA SIC Codice:  275202
USA SIC Catalog:  Printers

IMPACT DISC PACKAGING AND PRINTING; INC
Indirizzo commerciale:  931 N. State Road 434 Suite 1201-236,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4072959337 (+1-407-295-9337)
Numero di Fax :  
Sito web:  cdduplicatoronline. com
Email:  
USA SIC Codice:  2711
USA SIC Catalog:  Printing companies

IEXACT
Indirizzo commerciale:  693 Ashford Oaks Drive apt #201,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  3687531163 (+1-368-753-1163)
Numero di Fax :  
Sito web:  
Email:  
USA SIC Codice:  729903
USA SIC Catalog:  Escort Service

HYPHEN ENTERPRISES
Indirizzo commerciale:  1661 E. 400 Rd,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4077867351 (+1-407-786-7351)
Numero di Fax :  
Sito web:  ibarguen. org
Email:  
USA SIC Codice:  9999
USA SIC Catalog:  Unclassified

HYPER-ION
Indirizzo commerciale:  47BroadmoorAvenuenoneSanAnselmo,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4075785754 (+1-407-578-5754)
Numero di Fax :  
Sito web:  parabolicboom. net, parabolicboom. org
Email:  
USA SIC Codice:  9999
USA SIC Catalog:  Unclassified

HWPHOTO
Indirizzo commerciale:  133 Forest Lake Dr,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4078622292 (+1-407-862-2292)
Numero di Fax :  
Sito web:  re-investors. com
Email:  
USA SIC Codice:  7221
USA SIC Catalog:  Photographers

HUFF REALTY - CC
Indirizzo commerciale:  825 Renaissance Pointe #202,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4072471183 (+1-407-247-1183)
Numero di Fax :  4075217631 (+1-407-521-7631)
Sito web:  thewomenofwealth. com, vipcorporate. net, vipenterprises. net, vipexchange. net, vipfundraising. net, vip
Email:  
USA SIC Codice:  6531
USA SIC Catalog:  Real Estate

HOSPITALITY RESOURCE SUPPLY; INC.
Indirizzo commerciale:  499 N State Rd 434 Ste 1005,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4078624170 (+1-407-862-4170)
Numero di Fax :  4078699303 (+1-407-869-9303)
Sito web:  shophrs. com
Email:  
USA SIC Codice:  806202
USA SIC Catalog:  Hospitals

HOSPITALITY CONTROL CORPORATION
Indirizzo commerciale:  1055 W SR 437 Suite 1055,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4079216455 (+1-407-921-6455)
Numero di Fax :  
Sito web:  hospitalitycontrol. com
Email:  
USA SIC Codice:  806202
USA SIC Catalog:  Hospitals

HOPCRAFT; GREG
Indirizzo commerciale:  380 S State Rd 434 Ste 1004,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4072935373 (+1-407-293-5373)
Numero di Fax :  
Sito web:  smiloan. com
Email:  
USA SIC Codice:  614101
USA SIC Catalog:  Loans

HOMETOWNAMERICAREALTY
Indirizzo commerciale:  154HickoryStickCt,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4077741986 (+1-407-774-1986)
Numero di Fax :  4077741986 (+1-407-774-1986)
Sito web:  e-cfsinc. com
Email:  
USA SIC Codice:  653118
USA SIC Catalog:  Real Estate

HOMETOWN AMERICA REALTY INC
Indirizzo commerciale:  154 Hickory Stick Ct,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  3687531163 (+1-368-753-1163)
Numero di Fax :  
Sito web:  
Email:  
USA SIC Codice:  6531
USA SIC Catalog:  Real Estate

HOMES BUYER SERVICES; INC.
Indirizzo commerciale:  335 Debary Ave,DEBARY,FL,USA
CAP:  32713-3922
Numero di telefono :  3866685700 (+1-386-668-5700)
Numero di Fax :  
Sito web:  
Email:  
USA SIC Codice:  6531
USA SIC Catalog:  Real Estate

HOMES BUYER SERVICES
Indirizzo commerciale:  335 Debary Avenue,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  
Numero di Fax :  
Sito web:  
Email:  
USA SIC Codice:  738999
USA SIC Catalog:  Business Services Nec

HOMERO CALDERON
Indirizzo commerciale:  515 San Marie Avenue,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4073108938 (+1-407-310-8938)
Numero di Fax :  4076967163 (+1-407-696-7163)
Sito web:  value-religious. com
Email:  
USA SIC Codice:  738999
USA SIC Catalog:  Business Services Nec

HOMEMONEYMAKER
Indirizzo commerciale:  126 Varsity Circle,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4073907203 (+1-407-390-7203)
Numero di Fax :  4073907264 (+1-407-390-7264)
Sito web:  homepcdollars. com
Email:  
USA SIC Codice:  738999
USA SIC Catalog:  Business Services Nec

HOME OF PEPSI
Indirizzo commerciale:  810 borde del camino dr,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4078626705 (+1-407-862-6705)
Numero di Fax :  
Sito web:  homeofpepsi. com
Email:  
USA SIC Codice:  738999
USA SIC Catalog:  Business Services Nec

HOME DESIGN SERVICES; INC
Indirizzo commerciale:  580 Cape Cod Ln Suite 9,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  4078625444 (+1-407-862-5444)
Numero di Fax :  4076826044 (+1-407-682-6044)
Sito web:  10000houseplanstore. com;enormousplans. com;jameszirkelhomedesignservices. com;jameszirkelhomedesignser
Email:  
USA SIC Codice:  152106
USA SIC Catalog:  Designers

HOME DESIGN SERVICES
Indirizzo commerciale:  580 Cape Cod Lane Suite 9,DEBARY,FL,USA
CAP:  32713
Numero di telefono :  
Numero di Fax :  
Sito web:  hdsplans. com
Email:  
USA SIC Codice:  152106
USA SIC Catalog:  Designers

Show 438-456 record,Total 600 record
First Pre [19 20 21 22 23 24 25 26 27 28] Next Last  Goto,Total 32 Page










Azienda News:
  • What is the difference between a convolutional neural network and a . . .
    A CNN, in specific, has one or more layers of convolution units A convolution unit receives its input from multiple units from the previous layer which together create a proximity Therefore, the input units (that form a small neighborhood) share their weights The convolution units (as well as pooling units) are especially beneficial as:
  • machine learning - What is a fully convolution network? - Artificial . . .
    A fully convolutional network is achieved by replacing the parameter-rich fully connected layers in standard CNN architectures by convolutional layers with $1 \times 1$ kernels I have two questions What is meant by parameter-rich? Is it called parameter rich because the fully connected layers pass on parameters without any kind of "spatial
  • What is the fundamental difference between CNN and RNN?
    A CNN will learn to recognize patterns across space while RNN is useful for solving temporal data problems CNNs have become the go-to method for solving any image data challenge while RNN is used for ideal for text and speech analysis
  • Extract features with CNN and pass as sequence to RNN
    $\begingroup$ But if you have separate CNN to extract features, you can extract features for last 5 frames and then pass these features to RNN And then you do CNN part for 6th frame and you pass the features from 2,3,4,5,6 frames to RNN which is better The task I want to do is autonomous driving using sequences of images
  • In a CNN, does each new filter have different weights for each input . . .
    Typically for a CNN architecture, in a single filter as described by your number_of_filters parameter, there is one 2D kernel per input channel There are input_channels * number_of_filters sets of weights, each of which describe a convolution kernel So the diagrams showing one set of weights per input channel for each filter are correct
  • Reduce receptive field size of CNN while keeping its capacity?
    One way to keep the capacity while reducing the receptive field size is to add 1x1 conv layers instead of 3x3 (I did so within the DenseBlocks, there the first layer is a 3x3 conv and now followed by 4 times a 1x1 conv layer instead of the original 3x3 convs (which increase the receptive field))
  • convolutional neural networks - When to use Multi-class CNN vs. one . . .
    I'm building an object detection model with convolutional neural networks (CNN) and I started to wonder when should one use either multi-class CNN or a single-class CNN That is, if I'm making e g a
  • How to handle rectangular images in convolutional neural networks . . .
    Almost all the convolutional neural network architecture I have come across have a square input size of an image, like $32 \\times 32$, $64 \\times 64$ or $128 \\times 128$ Ideally, we might not have a
  • neural networks - Why FCNN is not always better than CNN? - Artificial . . .
    Also CNN is not fully connected when doing convolution, except the kernel size is 1×1 with stride 1 which basically same as fully connected layer We know that fully connected means better And I think kernel size 1×1 and stride 1 in CNN (which basically equal same as FCNN) is performing better even though overfitting




Annuari commerciali , directory aziendali
Annuari commerciali , directory aziendali copyright ©2005-2012 
disclaimer