|
USA-TN-KNOXVILLE Azienda Directories
|
Azienda News:
- YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel . . .
Vision-based drone-to-drone detection has attracted increasing attention due to its importance in numerous tasks such as vision-based swarming, aerial see-and-avoid, and malicious drone detection However, existing methods often encounter failures when the background is complex or the target is tiny
- 无人机小目标检测YOLOMG,双模态融合,多场景数据集 . . .
本文提出了一种新颖的端到端框架,利用运动引导在复杂环境中准确识别小型无人机。 该框架首先创建一个运动差异图来捕捉小型无人机的运动特征。 接着,使用双模态融合模块将运动差异图与RGB图像结合,以实现无人机特征的适应性学习。 最后,通过基于 YOLOv5 框架的增强 Backbone 和检测Head处理融合后的特征图,以实现准确的检测结果。 为了验证YOLOMG,作者提出一个新的数据集,命名为ARD100,该数据集包含100个视频(202,467帧),覆盖了各种具有挑战性的条件,与现有无人机检测数据集相比,其平均目标尺寸最小。 在ARD100和 NPS-Drones 数据集上的大量实验表明,作者提出的检测器在具有挑战性的条件下表现出色,并在多个指标上超越了最先进的算法。 1 引言
- GitHub - Irisky123 YOLOMG: Dataset and Codes for the submission paper . . .
Codes and dataset for the paper "YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel-Level Motion Fusion"
- 深度学习论文: YOLOMG: Vision-based Drone-to-Drone . . .
采用改进三帧差分法,结合图像配准技术分离动态背景,强化微小目标运动特征。 通过自适应权重融 文章浏览阅读64次。 针对复杂环境下微型无人机检测难题,本文提出端到端框架YOLO-MG,通过运动引导实现精准检测。 _yolomg: vision-based drone-to-drone detection with appearance and pixel-leve
- Publication-Shiyu Zhaos Lab
A Real-to-Sim-to-Real Approach for Vision-Based Autonomous MAV-Catching-MAV Z Ning, Y Zhang, X Lin, and S Zhao* Unmanned Systems Accepted in Apr 2024 (PDF) Global-local MAV detection under
- YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel . . .
This paper proposes a novel end-to-end framework that accurately identifies small drones in complex environments using motion guidance It starts by creating a motion difference map to capture the motion characteristics of tiny drones
- YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel . . .
This paper proposes a novel end-to-end framework that accurately identifies small drones in complex environments using motion guidance It starts by creating a motion difference map to capture the motion characteristics of tiny drones
- YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel . . .
To address the aforementioned challenges, we propose a motion-guided object detector (YOLOMG) for extremely small drone detection First, we introduce a motion feature enhancement module to extract pixel-level motion features of small drones
- 论文精度:YOLOMG:基于视觉的无人机间检测算法 . . .
提出YOLOMG框架,融合RGB图像与运动差异图,解决复杂背景和小目标检测问题
- 小目标检测新方案 YOLOMG | 运动差异图+双模态融合 . . .
本文提出了一种新颖的端到端框架,利用运动引导在复杂环境中准确识别小型无人机。 该框架首先创建一个运动差异图来捕捉小型无人机的运动特征。 接着,使用双模态融合模块将运动差异图与RGB图像结合,以实现无人机特征的适应性学习。 最后,通过基于YOLOv5框架的增强 Backbone 和检测Head处理融合后的特征图,以实现准确的检测结果。 为了验证YOLOMG,作者提出一个新的数据集,命名为ARD100,该数据集包含100个视频(202,467帧),覆盖了各种具有挑战性的条件,与现有无人机检测数据集相比,其平均目标尺寸最小。 在ARD100和NPS-Drones数据集上的大量实验表明,作者提出的检测器在具有挑战性的条件下表现出色,并在多个指标上超越了最先进的算法。
|
|