companydirectorylist.com  Global Business Directory e directory aziendali
Ricerca Società , Società , Industria :


elenchi dei paesi
USA Azienda Directories
Canada Business Elenchi
Australia Directories
Francia Impresa di elenchi
Italy Azienda Elenchi
Spagna Azienda Directories
Svizzera affari Elenchi
Austria Società Elenchi
Belgio Directories
Hong Kong Azienda Elenchi
Cina Business Elenchi
Taiwan Società Elenchi
Emirati Arabi Uniti Società Elenchi


settore Cataloghi
USA Industria Directories














  • ncount_RNA 和nFeature_RNA辅助过滤 - 腾讯云
    本文介绍了如何利用Seurat工具包中的nFeature_RNA和nCount_RNA进行细胞质控,通过可视化手段确定合适的阈值以过滤异常细胞,确保数据质量。 文章还探讨了这些参数在实际单细胞RNA测序数据分析中的应用,包括降维、聚类和排除双细胞。
  • 单细胞质控及其标准化、聚类降维 - 知乎 - 知乎专栏
    seurat对象中,metadata矩阵展示了质控所需要的数据,包括”nFeature_RNA“,"nCount_RNA", "percent mt",我们做质控主要是根据这三个指标。 让我们查看存储在seurat对象meta data数据:
  • Seurat | 强烈建议收藏的单细胞分析标准流程(基础质控与过滤)(一)_单细胞分析流程-CSDN博客
    FeatureScatter(srat, feature1 = "nFeature_RNA", feature2 = "Doublet_score") Note! 这里我们可以看到高线粒体基因与低UMI计数相关,可以理解为死细胞。 﫠; 再看一下核糖体基因与线粒体基因,显著负相关。 ; doublet和基因表达数之间也有一定的相关性。 8 添加信息 8 1 过滤
  • 单细胞数据的导入与质控 - Seurat - 简书
    需要计算的主要是mitoRatio和GenesPerUMI(因为nCount_RNA和nFeature_RNA在meta data中) 1 计算mitoRatio 主要是利用的Seurat的PercentageFeatureSet()功能,这个函数将使用一个模式(pattern)搜索基因标识符,对于每一列(细胞),它将选取特征基因的计数之和,除以所有基因的计数之和
  • 单细胞分析 | Seurat基础流程 | 保姆级教程 - CSDN博客
    第二个图nCount_RNA vs nFeature_RNA,是基因数量与细胞中检测到的分子总数的关系的散点图,即测序深度与基因数量的关系。高质量的测序数据中两者基本处于正相关的关系,但要排除由于双胞和多胞造成的分子数量过大的部分数据,即右上方离群点。
  • meaning of nFeature_RNA · Issue #2055 · satijalab seurat
    I was looking into my nFeatures_RNa column after creating the object and it is the same for all the samples, Hence I am getting an error saying no variable features are present Could you please help me understand why is this happening
  • Seurat - Guided Clustering Tutorial - Satija Lab
    # FeatureScatter is typically used to visualize feature-feature relationships, but can be used # for anything calculated by the object, i e columns in object metadata, PC scores etc plot1 <-FeatureScatter (pbmc, feature1 = "nCount_RNA", feature2 = "percent mt") plot2 <-FeatureScatter (pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA
  • In Seurat, How Do nCount_RNA Differ from nFeature_RNA? - biostars
    nFeature_RNA is the number of genes detected in each cell nCount_RNA is the total number of molecules detected within a cell Low nFeature_RNA for a cell indicates that it may be dead dying or an empty droplet High nCount_RNA and or nFeature_RNA indicates that the "cell" may in fact be a doublet (or multiplet) In combination with




Annuari commerciali , directory aziendali
Annuari commerciali , directory aziendali copyright ©2005-2012 
disclaimer