|
- ncount_RNA 和nFeature_RNA辅助过滤 - 腾讯云
本文介绍了如何利用Seurat工具包中的nFeature_RNA和nCount_RNA进行细胞质控,通过可视化手段确定合适的阈值以过滤异常细胞,确保数据质量。 文章还探讨了这些参数在实际单细胞RNA测序数据分析中的应用,包括降维、聚类和排除双细胞。
- 单细胞质控及其标准化、聚类降维 - 知乎 - 知乎专栏
seurat对象中,metadata矩阵展示了质控所需要的数据,包括”nFeature_RNA“,"nCount_RNA", "percent mt",我们做质控主要是根据这三个指标。 让我们查看存储在seurat对象meta data数据:
- Seurat | 强烈建议收藏的单细胞分析标准流程(基础质控与过滤)(一)_单细胞分析流程-CSDN博客
FeatureScatter(srat, feature1 = "nFeature_RNA", feature2 = "Doublet_score") Note! 这里我们可以看到高线粒体基因与低UMI计数相关,可以理解为死细胞。 ; 再看一下核糖体基因与线粒体基因,显著负相关。 ; doublet和基因表达数之间也有一定的相关性。 8 添加信息 8 1 过滤
- 单细胞数据的导入与质控 - Seurat - 简书
需要计算的主要是mitoRatio和GenesPerUMI(因为nCount_RNA和nFeature_RNA在meta data中) 1 计算mitoRatio 主要是利用的Seurat的PercentageFeatureSet()功能,这个函数将使用一个模式(pattern)搜索基因标识符,对于每一列(细胞),它将选取特征基因的计数之和,除以所有基因的计数之和
- 单细胞分析 | Seurat基础流程 | 保姆级教程 - CSDN博客
第二个图nCount_RNA vs nFeature_RNA,是基因数量与细胞中检测到的分子总数的关系的散点图,即测序深度与基因数量的关系。高质量的测序数据中两者基本处于正相关的关系,但要排除由于双胞和多胞造成的分子数量过大的部分数据,即右上方离群点。
- meaning of nFeature_RNA · Issue #2055 · satijalab seurat
I was looking into my nFeatures_RNa column after creating the object and it is the same for all the samples, Hence I am getting an error saying no variable features are present Could you please help me understand why is this happening
- Seurat - Guided Clustering Tutorial - Satija Lab
# FeatureScatter is typically used to visualize feature-feature relationships, but can be used # for anything calculated by the object, i e columns in object metadata, PC scores etc plot1 <-FeatureScatter (pbmc, feature1 = "nCount_RNA", feature2 = "percent mt") plot2 <-FeatureScatter (pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA
- In Seurat, How Do nCount_RNA Differ from nFeature_RNA? - biostars
nFeature_RNA is the number of genes detected in each cell nCount_RNA is the total number of molecules detected within a cell Low nFeature_RNA for a cell indicates that it may be dead dying or an empty droplet High nCount_RNA and or nFeature_RNA indicates that the "cell" may in fact be a doublet (or multiplet) In combination with
|
|
|