|
- NLP比赛利器:DeBERTa系列模型介绍 - CSDN博客
DeBERTa将上下文的内容和位置信息用于MLM。 解耦注意力机制已经考虑了上下文词的内容和相对位置,但没有考虑这些词的绝对位置,这在很多情况下对于预测至关重要。
- DeBERTa: Decoding-enhanced BERT with Disentangled Attention
Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques
- DEBERTA:解耦注意力的解码增强型BERT - 知乎
由于将DeBERTa缩放到更大的模型而带来的显着性能提升,使得单个DeBERTa1 5B在2020年12月29日的macro-average得分 (89 9比89 8)方面首次超过了SuperGLUE的人类性能,并且组合的DeBERTa模型 (DeBERTaEnsemble)截至2021年1月6日在SuperGLUE基准排名中名列前茅,比人类基线高出许多 (90 3对
- GitHub - microsoft DeBERTa: The implementation of DeBERTa
This repository is the official implementation of DeBERTa: D ecoding- e nhanced BERT with Disentangled A ttention and DeBERTa V3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing
- microsoft deberta-v3-base · Hugging Face
DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data
- 还在用RoBERTa?快来看看DeBERTa吧! - 知乎
DeBERTa模型是微软在2021年提出的,首发在ICLR 2021上,到现在其实已经迭代了三个版本。 第一版发布的时候在 SuperGLUE [1] 排行榜上就已经获得了超越人类的水平,如今也成为了Kaggle上非常重要的NLP Backbone(BERT感觉已经没什么人用了)。
- DeBERTa - Hugging Face
Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques
- DeBERTa 论文+代码笔记 - Yam
RoBERTa 出现的竖直条纹主要由高频虚词引起,DeBERTa 的主要出现在第一列,表示 [CLS]。 因此对于一个好的预训练模型,强调 [CLS] 是可取的,因为它的向量通常用作下游任务中整个输入序列的上下文表示。
|
|
|