companydirectorylist.com  Global Business Directory e directory aziendali
Ricerca Società , Società , Industria :


elenchi dei paesi
USA Azienda Directories
Canada Business Elenchi
Australia Directories
Francia Impresa di elenchi
Italy Azienda Elenchi
Spagna Azienda Directories
Svizzera affari Elenchi
Austria Società Elenchi
Belgio Directories
Hong Kong Azienda Elenchi
Cina Business Elenchi
Taiwan Società Elenchi
Emirati Arabi Uniti Società Elenchi


settore Cataloghi
USA Industria Directories














  • 高等数学中,dy 的「d」是什么意思? - 知乎
    dy中的d全称differential,代表y这个变量的很小的变化。 同理,dx中的d是指x这个变量的很小的变化。 最先发明这种符号的是德国数学家戈特弗里德·莱布尼茨。
  • 导数 dy dx 是不是一个整体符号? - 知乎
    更新: 之所以写这个答案,是因为看过很多答案将dx,dy理解成微分,然后来解释微积分符号的含义。
  • 老师说链式法则里某个 dy dx 不能理解为 dy 除以 . . . - 知乎
    \frac{dx}{dy}={\left ( \frac{dx}{\color{Red}{ dt} } \right ) \Big \left ( \frac{dy}{\color{Red}{ dt}} \right ) } 这里与复合函数链式法则完全相同,由于 dx,dy 都是由 t 的变化而产生的无穷小量,因此仍然可以同时“乘”、“除” dt 。 鸣谢: 莱布尼茨发明的部分叙述参考了:Is dy dx not a
  • derivatives - Proof of dy=f’(x)dx - Mathematics Stack Exchange
    Stack Exchange Network Stack Exchange network consists of 183 Q A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers
  • 微分符号 dx、dy 表示什么含义? - 知乎
    很显然,我们有 \\Delta y>dy 。这是因为函数的图像在切线上方。由于 \\Delta y 和 dy 是不相等的,所以 dy 不能代表 y 的微小变化量。同样, dx 不能代表 x 的微小变化量。也就是说,微分代表接近于零的微小变化量是错的!
  • Why is the 2nd derivative written as - Mathematics Stack Exchange
    In Leibniz notation, the 2nd derivative is written as $$\dfrac{\mathrm d^2y}{\mathrm dx^2}\ ?$$ Why is the location of the $2$ in different places in the $\mathrm dy \mathrm dx$ terms?
  • 微分符号,dx,dy到底是什么含义? - 知乎
    刚学高数,用的同济教材,学到隐函数求导的时候,教材莫名奇妙的出现dy,dx ,d dy等符号,此后教材导数全用d什么d什么表示了,教材没有对这些符号进行解释,老师上课也避而不谈。网上搜索也只是模糊的答案 各位大佬救救我。
  • What exactly are dx and dy in differential equations?
    If I understand correctly, you mean if we have something like: $$\frac{dy}{dx}=f(y)g(x)$$ then we get: $$\int\frac{1}{f(y)}\frac{dy}{dx}dx=\int g(x)dx$$ writing it like this shows that we integrate wrt the same variable on both sides but it can be simplified to: $$\int\frac{dy}{f(y)}=\int g(x)dx$$ similarly if we have an expression of the form




Annuari commerciali , directory aziendali
Annuari commerciali , directory aziendali copyright ©2005-2012 
disclaimer