|
- 一文读懂:大模型RAG(检索增强生成)含高级方法 - 知乎
最近推出的课程 构建和评估高级 RAG 中,以及 LlamaIndex 和评估框架 Truelens ,他们提出了RAG 三元组评估模式 — 分别是对问题的检索内容相关性、答案的基于性(即大语言模型的答案在多大程度上被提供的上下文的支持)和答案对问题的相关性。
- RAG-检索增强生成从入门到实战,看这一篇就够了 - 知乎
基于RAG的知识问答:包括用户query嵌入、召回、排序、拼接文档、构建context、基于query和context构建prompt、将prompt喂给大模型生成答案。 RAG的工作原理 问题理解和检索阶段 :RAG模型接收到用户的问题或请求后,利用检索模块从预定义的知识库或文档集合中找到与
- RAG是什么? - 知乎
RAG(Retrieval-Augmented Generation,检索增强生成)由Facebook在2020年发表的论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中提出,应用于知识敏感的NLP任务,如问答。RAG将问题求解划分为检索和生成两阶段,先通过检索,查找与问题相关的文档,再将文档和
- 大模型时代,目前开源的RAG检索增强框架有哪些? - 知乎
RAG评估的两种类型:检索评估和生成评估,下面的每个策略将被标记为检索评估、生成评估或两者。 如果没有真实数据,如何评价 RAG? 基于相似度阈值判断 类型:检索评估 如果正在使用像 Pinecone 这样的矢量数据库,可能熟悉矢量相似度的概念。
- 检索增强生成(RAG)有什么好的优化方案? - 知乎
RAG之前先做query分类 不是每个query需要召回增强,有些可以直接用大模型回答,例如摘要、续写、翻译等。query分类的目的是过滤和分流,把需要RAG的query送入RAG,把不需要RAG的query直接送入大模型。
- RAG workflow是什么? - 知乎
RAG(Retrieval-Augmented Generation)workflow是指在RAG技术基础上,通过定义和执行一系列任务来处理输入查询并生成最终回答的过程。 一、RAG技术 RAG是一种结合检索和生成的技术,旨在解决生成式模型在处理知识密集型任务时的不足。
- RAG中多路召回融合算法rrf的一些疑惑? - 知乎
在RAG(Retrieval-Augmented Generation)系统中,多路召回的结果如何处理,通常涉及以下两种常见方法: 融合算法(如RRF)进行重排序后直接提供结果 使用rerank模型对召回结果重排
- GraphRAG:知识图谱+大模型 - 知乎
Graph RAG是一种基于知识图谱的检索增强技术,通过构建图模型的知识表达,将实体和关系之间的联系用图的形式进行展示,然后利用大语言模型 LLM进行检索增强。 Graph RAG 将知识图谱等价于一个超大规模的词汇表,而实体和关系则对应于单词。
|
|
|